4. 색인, 선택
페이지 정보
작성자 관리자 댓글 0건 조회 3,225회 작성일 20-01-22 21:26본문
삭제하기
실습1.
from pandas import Series, DataFrame
import pandas as pd
import numpy as np
obj = Series(np.arange(5), index=['a','b','c','d','e'])
print(obj)
obj2=obj.drop('c')
print(obj2)
obj3=obj.drop(['b', 'd', 'c'])
print(obj3)
[결과]
a    0
b    1
c    2
d    3
e    4
dtype: int32
a    0
b    1
d    3
e    4
dtype: int32
a    0
e    4
dtype: int32
axis는 축을 나타낸다. 0은 row, 1은 column을 나타낸다.
실습2.
from pandas import Series, DataFrame
import pandas as pd
import numpy as np
df = DataFrame(np.arange(16).reshape(4,4), index=['seoul', 'busan','daegu','incheon'], columns=['one', 'two', 'three', 'four'])
print(df)
new_df = df.drop(['seoul', 'busan'])
print(new_df)
new_df = df.drop('three', axis=1)
print(new_df)
new_df = df.drop(['two', 'four'], axis=1)
print(new_df) 
[결과]
         one  two  three  four
seoul      0    1      2     3
busan      4    5      6     7
daegu      8    9     10    11
incheon   12   13     14    15
         one  two  three  four
daegu      8    9     10    11
incheon   12   13     14    15
         one  two  four
seoul      0    1     3
busan      4    5     7
daegu      8    9    11
incheon   12   13    15
         one  three
seoul      0      2
busan      4      6
daegu      8     10
incheon   12     14
색인, 선택, 슬라이싱
실습3.
from pandas import Series, DataFrame
import pandas as pd
import numpy as np
obj = Series(np.arange(4.), index=['a','b','c','d'])
print(obj)
print(obj['b':'c'])
obj['b':'c'] = 10
print(obj)
[결과]
a    0.0
b    1.0
c    2.0
d    3.0
dtype: float64
b    1.0
c    2.0
dtype: float64
a     0.0
b    10.0
c    10.0
d     3.0
dtype: float64
실습4.
from pandas import Series, DataFrame
import pandas as pd
import numpy as np
data = DataFrame(np.arange(16).reshape(4,4), 
            index=['seoul', 'busan', 'kwangju', 'daegu'],
            columns=['one', 'two', 'three', 'four'])
print(data)
print(data['two'])
print(data[['one', 'two']])
print(data[:2])
print(data[data['three'] > 7])
print(data < 5)
data[data<5] = 0
print(data)
[결과]
         one  two  three  four
seoul      0    1      2     3
busan      4    5      6     7
kwangju    8    9     10    11
daegu     12   13     14    15
seoul       1
busan       5
kwangju     9
daegu      13
Name: two, dtype: int32
         one  two
seoul      0    1
busan      4    5
kwangju    8    9
daegu     12   13
       one  two  three  four
seoul    0    1      2     3
busan    4    5      6     7
         one  two  three  four
kwangju    8    9     10    11
daegu     12   13     14    15
           one    two  three   four
seoul     True   True   True   True
busan     True  False  False  False
kwangju  False  False  False  False
daegu    False  False  False  False
         one  two  three  four
seoul      0    0      0     0
busan      0    5      6     7
kwangju    8    9     10    11
daegu     12   13     14    15
실습5.
from pandas import Series, DataFrame
import pandas as pd
import numpy as np
data = DataFrame(np.arange(16).reshape(4,4), 
            index=['seoul', 'busan', 'kwangju', 'daegu'],
            columns=['one', 'two', 'three', 'four'])
print(data)
# iloc / loc : DataFrame의 특수한 색인 필드(속성)
print(data.iloc[2])
print(data.iloc[2, 3])
print(data.loc['seoul'])
print(data.loc['busan', ['two', 'three']])
print(data.loc[['kwangju', 'daegu'], ['three', 'four']])
print(data.loc[['seoul', 'daegu'], ['three', 'one']])
print(data.loc[:'kwangju', 'three'])
[결과]
         one  two  three  four
seoul      0    1      2     3
busan      4    5      6     7
kwangju    8    9     10    11
daegu     12   13     14    15
one       8
two       9
three    10
four     11
Name: kwangju, dtype: int32
11
one      0
two      1
three    2
four     3
Name: seoul, dtype: int32
two      5
three    6
Name: busan, dtype: int32
         three  four
kwangju     10    11
daegu       14    15
       three  one
seoul      2    0
daegu     14   12
seoul       2
busan       6
kwangju    10
Name: three, dtype: int32
댓글목록
등록된 댓글이 없습니다.
